mozok.click » Фізика » Перемещение при равноускоренном прямолинейном движении. Уравнение координаты
Інформація про новину
  • Переглядів: 3076
  • Автор: admin
  • Дата: 14-10-2017, 18:11
14-10-2017, 18:11

Перемещение при равноускоренном прямолинейном движении. Уравнение координаты

Категорія: Фізика

Когда на дороге происходит авария, специалисты измеряют тормозной путь. Зачем? Чтобы определить скорость движения автомобиля в начале торможения и ускорение при торможении. Все это нужно для выяснения причин аварии: или водитель превысил скорость, или были неисправны тормоза, или с автомобилем все в порядке, а виноват нарушивший правила дорожного движения пешеход. Как, зная время торможения и тормозной путь, определить скорость и ускорение движения тела?

Узнаём о геометрическом смысле проекции перемещения

В 7 классе вы узнали, что для любого движения путь численно равен площади фигуры под графиком зависимости модуля скорости движения от времени наблюдения. Аналогичная ситуация и с определением проекции перемещения (рис. 29.1).



Получим формулу для вычисления проекции перемещения тела за интервал времени от t: = 0 до t2 = t. Рассмотрим равноускоренное прямолинейное движение, при котором начальная скорость и ускорение имеют одинаковое направление с осью OX. В этом случае график проекции скорости имеет вид, представленный на рис. 29.2, а проекция перемещения численно равна площади трапеции OABC:

На графике отрезок OAсоответствует проекции начальной скорости vx, отрезок BC — проекции конечной скорости vx, а отрезок OC — интервалу времени t. Заменив данные отрезки соответствующими физическими величинами и учитывая, что sx = SOABC, получим формулу для определения проекции перемещения:

Формулу (1) применяют для описания любого равноускоренного прямолинейного движения.

Определите перемещение тела, график движения которого представлен на рис. 29.1, б, за 2 с и за 4 с после начала отсчета времени. Поясните ответ.

Записываем уравнение проекции перемещения

Исключим переменную vx из формулы (1). Для этого вспомним, что при равноускоренном прямолинейном движении vx = v0 x + axt. Подставив выражение для vx в формулу (1), получим:

Таким образом, для равноускоренного прямолинейного движения получено уравнение проекции перемещения:


Рис. 29.3. График проекции перемещения при равноускоренном прямолинейном движении — парабола, проходящая через начало координат: если ax > 0, ветви параболы направлены вверх (а); если ax<0, ветви параболы направлены вниз (б)

Рис. 29.4. Выбор оси координат в случае прямолинейного движения

Итак, график проекции перемещения при равноускоренном прямолинейном движении — парабола (рис. 29.3), вершина которой соответствует точке разворота:

Поскольку величины vx и ax не зависят от времени наблюдения, зависимость sx (ί) является квадратичной. Например, если

можно получить еще одну формулу для вычисления проекции перемещения при равноускоренном прямолинейном движении:

Формулой (3) удобно пользоваться, если в условии задачи не идет речь о времени движения тела и не нужно его определять.

Выведите формулу (3) самостоятельно.

Обратите внимание: в каждой формуле (1-3) проекции vx, vx и ax могут быть как положительными, так и отрицательными — в зависимости от того, как направлены векторы v, v0 и a относительно оси OX.

Записываем уравнение координаты

Одна из основных задач механики — определение положения тела (координат тела) в любой момент времени. Мы рассматриваем прямолинейное движение, поэтому достаточно выбрать одну ось координат (например, ось OX), которую следует

направить вдоль движения тела (рис. 29.4). Из данного рисунка видим, что независимо от направления движения координату х тела можно определить по формуле:

Рис. 29.5. При равноускоренном прямолинейном движении график зависимости координаты от времени — парабола, пересекающая ось х в точке х0

где х0 — начальная координата (координата тела в момент начала наблюдения); sx — проекция перемещения.

поэтому для такого движения уравнение координаты имеет вид:

Для равноускоренного прямолинейного движения

Проанализировав последнее уравнение, делаем вывод, что зависимость х(ί) — квадратичная, поэтому график координаты — парабола(рис. 29.5).


Учимся решать задачи

Основные этапы решения задач на равноускоренное прямолинейное движение рассмотрим на примерах.

Пример решения задачи

Последовательность

действий

1. Внимательно прочитайте условие задачи. Определите, какие тела принимают участие в движении, каков характер движения тел, какие параметры движения известны.

Задача 1. После начала торможения поезд прошел до остановки 225 м. Какой была скорость движения поезда перед началом торможения? Считайте, что во время торможения ускорение поезда неизменно и равно 0,5 м/с2.

На пояснительном рисунке направим ось ОХ в направлении движения поезда. Так как поезд уменьшает свою скорость, то

2. Запишите краткое условие задачи. При необходимости переведите значения физических величин в единицы СИ. 2

Задача 2. По прямолинейному участку дороги идет пешеход с постоянной скоростью 2 м/с. Его догоняет мотоцикл, который увеличивает свою скорость, двигаясь с ускорением 2 м/с3. Через какое время мотоцикл обгонит пешехода, если на момент начала отсчета времени расстояние между ними было 300 м, а мотоцикл двигался со скоростью 22 м/с? Какое расстояние проедет мотоцикл за это время?

1. Внимательно прочитайте условие задачи. Выясните характер движения тел, какие параметры движения известны.

Подводим итоги

Для равноускоренного прямолинейного движения тела: проекция перемещения численно равна площади фигуры под графиком проекции скорости движения — графиком зависимости vx (ί):

3. Выполните пояснительный рисунок, на котором покажите ось координат, положения тел, направления ускорений и скоростей.

4. Запишите уравнение координаты в общем виде; воспользовавшись рисунком, конкретизируйте это уравнение для каждого тела.

5. Учитывая, что в момент встречи (обгона) координаты тел одинаковы, получите квадратное уравнение.

6. Решите полученное уравнение и найдите время встречи тел.

7. Вычислите координату тел в момент встречи.

8. Найдите искомую величину и проанализируйте результат.

9. Запишите ответ.

в этом состоит геометрический смысл перемещения;

уравнение проекции перемещения имеет вид:

Контрольные вопросы

1. С помощью каких формул можно найти проекцию перемещения sx для равноускоренного прямолинейного движения? Выведите эти формулы. 2. Докажите, что график зависимости перемещения тела от времени наблюдения — парабола. Как направлены ее ветви? Какому моменту движения соответствует вершина параболы? 3. Запишите уравнение координаты для равноускоренного прямолинейного движения. Какие физические величины связывает это уравнение?

Упражнение № 29

1. Лыжник, движущийся со скоростью 1 м/с, начинает спускаться c горы. Определите длину спуска, если лыжник проехал его за 10 с. Считайте, что ускорение лыжника было неизменным и составляло 0,5 м/с2.

2. Пассажирский поезд изменил свою скорость от 54 км/ч до 5 м/с. Определите расстояние, которое проехал поезд во время торможения, если ускорение поезда было неизменным и составляло 1 м/с2.

3. Тормоза легкового автомобиля исправны, если при скорости 8 м/с его тормозной путь — 7,2 м. Определите время торможения и ускорение автомобиля.

4. Уравнения координат двух тел, движущихся вдоль оси OX, имеют вид:

1) Для каждого тела определите: а) характер движения; б) начальную координату; в) модуль и направление начальной скорости; г) ускорение.

2) Найдите время и координату встречи тел.

3) Для каждого тела запишите уравнения vx(t) и sx(t), постройте графики проекций скорости и перемещения.

5. На рис. 1 представлен график проекции скорости движения для некоторого тела.

Определите путь и перемещение тела за 4 с от начала отсчета времени. Запишите уравнение координаты, если в момент времени t = 0 тело было в точке с координатой -20 м.

6. Два автомобиля начали движение из одного пункта в одном направлении, причем второй автомобиль выехал на 20 с позже. Оба автомобиля движутся равноускоренно с ускорением 0,4 м/с2. Через какой интервал времени после начала движения первого автомобиля расстояние между автомобилями будет 240 м?

7. На рис. 2 представлен график зависимости координаты тела от времени его движения.

Запишите уравнение координаты, если известно, что модуль ускорения 1,6 м/с2.

8. Эскалатор в метро поднимается со скоростью 2,5 м/с. Может ли человек на эскалаторе находиться в состоянии покоя в системе отсчета, связанной с Землей? Если может, то при каких условиях? Можно ли при этих условиях движение человека считать движением по инерции? Обоснуйте свой ответ.

 

Это материал учебника Физика 9 класс Барьяхтар, Довгий

 






^